Your Signature _____

1. Solve the following Bernoulli equation given by

$$\frac{dx}{dt}(t) - \frac{1}{3}x(t) = tx(t)^4$$
, $t > 0$ and $x(0) = -2$.

2. Consider the second order linear differential equation:

$$3\frac{d^2y}{dt^2} - 15\frac{dy}{dt} + 18y = 0$$

- (a) Find the general solution.
- (b) Find the particular solution satisfying $y(0) = 0, y'(0) = \alpha$.
- (c) When is $\lim_{t\to\infty} y(t) = 0$?
- 3. Solve the following short answer questions:
 - (a) Let $f:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ be a continuous function which is Lipschitz continuous function in x uniformly in t. Prove or Disprove: The initial value problem

$$\frac{dy}{dt} = f(t, y) \text{ for } t > 0, y(0) = 0.$$

has a unique solution $y:[0,\infty)\to\mathbb{R}$.

(b) Consider the second order linear differential equation:

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = 0,$$

Suppose $p(t) = \frac{1}{t}$, $q(t) = \frac{1}{t^2}$ having one regular singularity at 0. Write out the indical equation and possible Frobenius series solutions.

4. Solve the following boundary value problem:

$$u_{tt} = u_{xx} \text{ if } 0 < x, 0 \le t$$

 $u_x(0,t) = 0 \text{ if } t \ge 0$
 $u(x,0) = x^2 e^{-x} \text{ if } 0 < x$

5. Solve the Dirichlet Problem given by

$$\Delta u = 0 \text{ if } 0 \le x \le 4, 0 \le y \le 3$$

$$u(0,y) = u(4,y) = 0 \text{ if } 0 \le y \le 3$$

$$u(x,0) = 0 \text{ if } 0 \le x \le 4$$

$$u(x,3) = 100 \text{ if } 0 \le x \le 4$$

(you may assume that the problem has a unique solution).